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J.  Phys: Condens. Matter 4 (1992) 69574970. Printed in the UK 

The low-frequency conductivity of the Fermi glass 

A Hunt 
Earth Sciences Department. University of California, Riverside, CA 92521, USA 

Recwved 11 July 1991, in final form 16 April 1992 

AbstraeL The low-frequency (below the loss peak, or critical frequency, w,) conductivity, 
.(U), of the Fermi glass is evaluated in an appmximation replacing cluster currents with 
chain currenls. Lang chains with relatively low resistance values but large relaxation times 
make an important conlribulion 10 the polarization a r r e n t  density at low frequencies 
leading to a non-analytical frequency dependence on w of .(U) in the limit w -+ 0. The 
statistics of such chains are derived from the cluster slatislics near percolation, while the 
AC currents of such chains arc taken from an existing model for conduction on polymers. 

1. Introduction 

The Fermi glass refers to disordered systems where the dominant transport is by elec- 
tronic 'hopping' (phonon-assisted tunnelling) between localized states, and at temper- 
atures high enough that inter-site Coulomb interactions can be neglected. In linear 
response theory, ~ ( w )  is calculated from a random network of resistors Rij  (Miller 
and Abraham 1960) connected between each pair of sites i, j and capacitors Ci 
(Pollak 1974) from each site i to a generator of the potential Fo cos wf .vi. Fo is the 
external field, w its frequency, and T ;  the position of site i. Expressions for Rij  and 
Ci are 

R-? LJ = ( e z / k T ) w i j f ; ( l  - fj)  = ( e 2 v p h / k ~ ) e x p [ ( 2 r i j / a )  t ( n i j / k T ) ]  

C; = ( e 2 / k T ) f i ( l  - f ; )  = (e ' /kT)exp(-IEiI/kT).  (1.1) 

The distributions of Rs and Cs depend exponentially (through the Fermi function 
f % exp(- [E; l /kT) ,  with the Fermi energy, EF = 0, and the quantum mechanical 
transition rates wjj = U exp[(2rij  / u ) + ( E j j / k T ) ] )  on the distributions of the site 
energies, E;, and separations, r i j .  Here vph is a fundamental rate constant, about 
lo1' Hz, e the electronic charge, a the localization length, Ejj the larger of E. - Ei 
and 0, and Ajj c IEiI + IEjl f IEj,- EiI. A constant density of states N ( E F )  near 
EF is assumed; positions and energies of electronic states are assumed uncorrelated. 
Nearest neighbour statistics are Poisson. These assumptions are usual, and lead 
to Mott (1969) variable-range hopping (VRH) for the DC conductivity, In  crDC a 
-(To/T)ll(d+l) with kTo a [ N ( E F ) u d ] - '  and d the dimensionality. VRH is (e.g. 
Pollak 1972) equivalent to percolation theoretical alculations. 

At high frequencies w, pairs of sites connected to large capacitors Ci and C,, 
and connected by resistances Rij  with T~~ = Rij Ci Cj /( C, t Cj) = 1 /w ,  dominate 
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.(U) (Austin and Mott 1969, Pollak and Geballe 1961) and decouple from the 
network. o ( w )  determined from the distribution of these pairs of sites is known 
as the pair approximation and yields U ( W )  a w' with s approximately 0.8. A new 
treatment with energies E (Hunt 1991a) of relevant sites determined by optimization 
(as a function of frequency) yields u ( w )  in agreement with experiment for w > w, 
(the loss peak frequency). At wc included-pair processes (for which T < w;') 
percolate, as typical pair lengths and separations scale as a(To/T)' / (dt ' ) .  And at 
wc IEl < 0.2kT(T0/T)1/4 (in three dimensions) as in percolation theory (Friedman 
and Pollak 1978). 

The DC current flows in paths defined by resistors R < Rapt = RceZ" (Friedman 
and Pollak 1978) with R, the critical resistance and v the critical exponent of the 
correlation length. The representation (discussed below) 

with L the correlation length of the DC cluster (at R = RceZY),  and 1 the typical 
separation of maximal resistors on the percolation path, is based on optimization 
with respect to R,,, of a homogeneous network with L and 1 derived in terms of 
R,,, near percolation. Though a homogeneous network is sufficient to calculate uDc, 
large regions of lower resistance induce polarization currents contributing to u ( w )  
at low w (since they nced not connect the electrodes). The possibility of significant 
Curther charge. transport between pairs (below w,) was suggested by Long et a! (1988). 
Although the pre-exponential of (1.2) is not compatible with experiment in a-Si (Long 
er ai 1988), it is so (Long and Hansmann 1990) in aSi:HAu; the result implies that 
a-Si is special, i.e. the resulting criticism of percolation theory is inappropriate. 

It is not intended here to determine how to modify the model to bring uDc into 
agreement with experiment (in a-Si) but rather U, determine the low w response of 
the Fermi glass using the simplest model assumptions. (Although the results have 
already been published in Hunt (1991a) the details for low w were referred to this 
work.) Such a theory should apply to many systems. Indeed the T dependences 
of u(w)  in aSkH:Au also agrees (Hunt 1991a) with this theory (equation (3.18)). 
Moreover (Hunt 1991a) close agreement with experiment for u(w)/uDc results in 
a-Si. 

SpeciIic theoretical advances resulting from this theory are that (i) it is the first 
to describe cluster-length dependent enhancements of relaxation times of clusters of 
impedances (compared with the relaxation time of the slowest element, r, ~3 w;'), 
(ii) it is the first to show that the dominant effects on Re U ( W )  arise from processes 
with T = l / w  at all Irequencies, and (ii) as a consequence of (i) and (3) it shows 
that the effects of critical exponents of percolation theory on the exponent of w in 
U ( W )  is displaced from w, to 0, where relaxations extend to infinite size. Non-integral 
powers to w are generated on both sides of uC without denying the relevance of wide 
distributions of relaxation times to the power s in U ( W )  % war Divorcing s (which 
is system- as well as temperature-dependent) from percolation arguments (Niklasson 
1987) involving the fractal dimensionality, d,, also keeps d, independent of T allowing 
its meaningful experimental determination. 

The above advances in understanding rest on the following improvements in agree- 
ment between theory and experiment. First u ( w )  at low w in VRH systems as deter- 
mined by experiment (in a-Si (Long er a1 1988), in a-Si:HAu (Long and Hansmann 
1990) and in polyacetylene (Summerfield and Chroboczek 1985)) is always enhanced 
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over quadratic in w (from a maximum relaxation time T ~ )  predicted in other cluster 
theories (e.g. Boettger and Bryksin 1985) and in effective medium theories (Summer- 
field and Butcher 1982, Movaghar et a1 1980). This is rectiiied by the sub-quadratic 
depcndence predicted here; moreover in a-Si the power of the low-frequency conduc- 
tivity has been demonstrated explicitly to be in accord with this theory. Second the 
placement of wc is in agreement with experiment Thud, as noted, the temperature 
dependence of u(w)/uDc is brought into much closer agreement with experiment. 
Finally, the numerical pre-factor of u(w)/uDc is within a factor of three of the 
experimentally observed value. 

2. Temperature-dependent cluster statistics 

First, results for temperature-dependent lengths and for scaling variables of cluster 
statistics are found. Since Summerfield (1985) and Long et a1 (1988) discuss the ratio 
u(w) /uDc,  the pre-exponential co of oDC is found also. Besides, oo depends on 
lengths relevant for calculating u ( w ) ,  for which published values are controversial. 

The impedance network contains elemenls whose values are exponential functions 
of random variables with enormous spreads. We replace the continuous distribution 
of resistance values by a discrete one. All Rij  with e-'12R < R.. < e'/*R, 
e = 2.718. . ., are assigned the value R, and R takes on discrete values of powers of 
e. Emplacement in the network of Rs with R < R, ( R ,  arbitrary) connects isolated 
pairs when R,  is small. Increasing R, connects more pairs until pairs coalesce into 
clusters. R, R, when the largest cluster just reaches infinite size. If R, is not too 
different from Rc, cluster sue distributions are given in term of critical exponents. 

The temperature dependence of uDC arises chiefly through R,. The current 
avoids resistors with R > R,, and resistors with R < Rc can be replaced by shorts. 
If oDc were defined by R, = R,, the infinite correlation length x (at critical 
percolation) would require infinite separation of current-carrying paths and vanishing 
uDc So uDc is calculated from R ,  > R,; the resulting resistance of the relevant 
paths is increased, but beyond critical percolation their density is non-zero. Since 
uDc a Z/R,xd-', with 1 the typical separation of resistors (with R = R,), and 
x = x( E,), this quotient can be optimized. The subscript m is now dropped. From 
percolation theory (Stauffer 1979) 

' I  

x = XOIP, - P r y  (2.1) 

with xo a number and p ,  the critical value of the site (or bond) probability p. p ,  
relates to R,, p to R. The percolation condition for constant N ( E , )  is 

~ ( T / T , )  = (2.2) 

a, = 2.7 in 3~ and R, = R, exp tC. Assume p ,  cc a,, p 0: a, so td+'(T/To) = a, 

I p c - p l o c  It:+' -cdt'IT/To =<fI[c-<IT/To = Il~(R,/R)I(T/To)'/'d+'). (2.3) 

Using (2.3) in (2.1) 
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assuming unit bond length. But the average bond length in VRH is also temperature- 
dependent, rVRH zz Q ( T , / T ) I / ( ~ ~ ' ) ,  so 

x = X~~(T,/T)('+~)/(~~')~ ln(R,/R)I-". (2.5) 

xo, assumed of order 1, is dropped The factor I ,  slowly varying in R (justiiied later), 
is neglected in optimization. Substituting (2.5) into (1.1) and optimizing gives 

R,,, = Redd-')' (2.6) 

x(R,,,) L = a [ e / ( d -  ~)Y](~-')~(T~/T)('~~)~('~~). (2.7) 

and for the correlation length of the DC cluster 

x.( Rapt) defines the characteristic distance between branches of the DC cluster, and 
is given the symbol L. Note that this value for L is the same as in Reikh and Ruzhin 
(19!31), and nearly identical to that of Friedman and Pollak (1979). uDc is (dropping 
numerical factors) 

uDC = 1/ROp,Ld-' = l /RcLd- ' .  (2.8) 

Consider now 1. We assume it to be the average separation of maximal resistors 
on the finite clusters also. We assume that the ratio of the number of maximally 
valued resistances to the number of all smaller resistances is the same on clusters as 
in the bulk (because clusters are formed by random selections of resistors; although 
some maximal Rs may be shorted on large clusters, it turns out to be unnecessary to 
take this complication into account). This ratio scales as (Apsley and Hughes 1975) 

= a / ~ ~ ~ ~  = (T/To)'"dt'). (29) 

Resistances with [ 4 [, fill a ( d  3. l)-dimensional space to length rvRH; those with 
e - tC are located on the surface of this volume. The linear dimension, rs, of a 
cluster of s elements (volume o( s) of unit length is 

TI = sU"h(2) = s'/d'h(r) (2.10) 

with h some function of I E Ip, - P I S " ,  and with the product, uu, equal to the 
inverse of the fractal dimensionality, d,, of the percolation cluster (Stauffer 1979). 
Since individual bonds have rVRH = a(To/T)' /(d+l) 

vs = a(To/T) l / ( d t l ) S ~ ~ h ( 2 ) ,  (2.11) 

Selectively severing bonds perpendicular to F converis clusters to bundles of chains. 
rS is defined as NI with N the number of maximal Rs on the longest chain. Then 

N1 = a(T,/T)'/(dt')soV. (2.12) 
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( ~ l l " " ) / ~  = ( T / T ~ ) ~ / ( ~ + ' ) .  (2.13) 
Simultaneous solution of (2.11)-(213) yields 

1 = . ( T , / T ) ( ~ + ~ ~ ) / ( ~ + d ) .  (2.14) 
E - d  is a-d(T/To)(d+d/dr)ld(dt'), which, if d = d,, is the typical separation of 
maximal Rs in the bulk. Even so, 0.35 is obtained (with d, = 2.5) for the exponent 
instead of 0.33 (= i). This is reasonable as association of resistances through a 
fractal network should not alter their effective separations greatly. 

The density of s-clusters (unit bond length) is (Stauffer 1979) 
ns = I < ( d ) s - r f ( t )  (2.15) 

where K ( d )  a dimensionally dependent numerical factor and z = Ip, - plsO again. 
f(z) is appmximated by exp(-z) or e x p ( - t 2 )  (the latter expression valid on 
both sides of p-), and involves a sharp cut-off of cluster sizes except at p = p,. 
Clusters with bond lengths proportional to T " ~ , ,  have volumes proportional to 
ad(To /T)d / (d t ' ) ,  SO 

n,(T) = . -d(To/T)-d/ 'dt ' 's- ' f ( t ) .  (2.16) 
The distribution of maximum chain lengths, N = ? - * / E ,  is derived using n,dN = 
n, d s  and assuming (Hunt and Pollak 1990) that only one chain of length N with a 
given orientation exists on any cluster. Then 
nN = 1 ~ ' ( d ) N - ( ~ + ' ) l - ~  f ( z )  = 1.6N-41-3exp{-[(N1/L)'/Yln R,/R]*} (217) 
after applying (Stauffer 1979) (T  - 1 + uv)/uu = d $- 1. Some poorly known 
numerical constan6 are suppressed. The latter equality is for 3D. 

Note that (2.11) 'for r,(T) and (2.16) for n,(T) are consistent with (2.5) for 
x(T)  according to (Stauffer 1979) 

x = 1 r , skns  cis/ 1 skns ds (218) 

for 12 > 1 with z = ( p ,  - pis", unchanged by introducing the parameter T. 
For r-percolation, L,  I, and x are all independent of 2'. 

3. Calculations of a ( w )  at low frequencies 

3.1. General d-dimensionalily calculations 
a(w)  can be expressed (justified in appendix A) as a sum of uDc and a polarization 
current contribution, u,(w) 

up(w) = ~ c , " , , , , ( w ) / ~ ~ o  = C n , U w ) / F o  (3.1) 

with R the volume of the system, and I,,,,,,,(I,) the polarization current in an 
s-cluster. This was also found (PoUak 1971) for u(w) in the pair-approximation 
regime using a dielectric representation. The complexity of large clusters requires 
simplification. That long chains of resistances with similar R have strongly enhanced 
T S  and large cluster currents suggests that backbone chains of clusters (with R < R,) 
should contribute most to u,(w) for w < wc. The following approximations are 
applied. 
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(A) Cut selected maximal Rs oriented perpendicular to F 
(B) Replace all resistances RGj < Re-'12 by shorts 
(C)  Merge capacitors joined by shorts into single capacitors C = xi  C; 
(D) Replace all C s  with thcir average value 
(E) Make separations of resistors equal to their average value I 
(F) Beat the remaining elements as an untwisted polymer 
(G) Beat only the longest chain in a given cluster. 

A has been used for the DC cluster, and is certainly appropriate for small clusters 
(with a single maximal R). B assumes the chief contribution of sites connected by 
very small resistors to be charge generation. Since their contributions are parallel, the 
capacitances add, justifyiing C D is justified since the average number, nc, of shorted 
Rs per maximal R is (To/T)f/4 i~ 30 at typical (measured) T, making fluctuations 
in nc small; 30-'12 x 20%. E is in keeping with the result that the length of the 
longest chains of large clusters is most important, not irregularities in the positions of 
individual elements along the chain. Ignoring the tortucsity (F) may seem risky, but 
it is argued that it at most changes values of frequencydependent exponents by 3%; 
these exponents describe charge transport on long chains and the number of such 
chains per unit volume. G, adequate for Re u(w) (sec (3.4) and following discussion), 
is inadequate for direct calculation of Im u ( w ) ;  Im .(U) is best determined from 
Re u ( w )  by Kramers-Kronig relations. 

At w for which the longest chain contributes most to Reu(W) the remaining 
chains are much shorter (with smaller I, and much smaller T )  and contribute mainly 
to Im .(U). While smaller chains may be important in screening longer chains, this 
effect is ignored here (because of its complexity and because such screening effects 
are of minimal importance at large w and at w = 0) .  

The average capacitance per maximal R is evaluated at critical percolation; the 
variation of C with R is minimal if R is not too different from R,. This value is the 
product of the average capacitance of sites within kT(To/T)'I(dc')  of E,, and the 
average number of such sites connected by shorts to resistors with E,. The latter is 
given by the reciprocal of (2.13), the former is 

(C) = j N ( E F ) ( e a / k T ) e x p ( - E / k T ) d E  

so that 

C = n,(C) = e 2 / k T .  (3.3) 

The characteristic R of a chain is arbiLruy! Its polarization current (induced by 
an external field) is (Pollak and Pohl 1975) 

ReI , /F x ( 2 / 3 * 2 ) ( N 1 2 / R ) [ w 2 ~ ~ / ( 1  + W ' T ~ ) ]  r, = N 2 R C / a 2 .  (3.4) 

The exact result is a sum over modes, but Re IN is given to within 20% by (3.4). 
Note that IN has the form of a pair approximation with R -+ N R ,  C + N C ,  and 
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number of chains on a given cluster is taken to justify treating only the longest chain 
in the cluster. Further implications are discussed in Hunt (1991b). Converting the 
sum over cluster sizes to an integral over chain lengths and substituting (3.4) and 
(2.17) into (3.1) yields 

up(w) = (3 .2/3n2)  ( d N / N d f l ) e x p { - [ N I / L ( I n  R , / R ) ’ ” ] } ( N i 2 / R )  

x ( w ~ R ~ C ~ N ~ / K ~ ) / [ ~  + ( w 2 R 2 C 2 N 4 / n 4 ) ] .  (3.5) 
J 

A common practice is to treat R as a parameter and optimize op(R ,w) .  This 
‘finds’ the dominant relaxation units at w. Such a procedure (Hunt 1990) teads 
here to R = R,. The physical reason is the exponential cut-off in nN (eliminated 
when R = R, i.e. the cluster sizes decay according to a simple power law at Critical 
percolation) and that as w -+ 0 the relaxation time of the dominant process diverges, 
i.e. N + w. What is surprising is that R = R, holds also for finite w. Note, 
however, that the simple condition UT % 1 leads to 

N ~ R c / ~ ~  = I (3.6) 

which implies 

N = ( n 2 / ~ R C ) 1 ’ 2  (3.7) 

so that 

IN  rx ( 1 / 2 ) N 1 2 / R  (3.8) 

and selection of longer chains with smaller Rs enhances I, in both respects This 
argument is related to (in 3 ~ )  

u,(w) a (1/NZR)(~2RZC2N4/n4)F(~)/[1 + ( w ~ R ~ C ~ N ~ / ~ ~ ) ]  (3.9) 

where the integral (over only thase N for which ~~w ~ i :  1 )  

J d N f ( z ) /  N3 = F( z )  / N 2  (3.10) 

and F(z) is known only through the definition (3.10), but contains the same na- 
ture exponential cut-ofE The maximum of u p ( w ) / F ( z )  clearly occurs at N 2 R  = 
l / w C n 2  (by analogy to the pair approximation i.e. R -+ N 2 R / n 2 ) .  However, pair 
distributions are slowly varying functions of R, whereas F( z )  is not The aim of this 
paragraph is, however, not a direct calculation of u p ( w ) ,  but a suggestion for the 
decomposition of clusters. The factor mitigating against merely choosing (3.8) is the 
number of such chains. Chains with large N and small R (signscantly less than R,) 
are very rare. The particular decomposition of the clusters is very important. 

It is clear that one can sum clusters of all sizes for any arbitrary R One might ask 
if it is legitimate to sum over R also. This method is unusual, but not inconsistent. 
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By (3.6) one has that for a given frequency, long chains of small resistors and/or 
short chains of large resistors contribute to .,(U). Since such clusters are mutually 
exclusive, no redundancy in counting results from a double sum. It will turn out that 
for w EJ wc the result of such a double sum (approximated as a double integral) is 
larger than the contribution from R = Rc, while an approximation including only 
R = R, is larger when w < U,. An important question is why a sum over R is 
preferable to, say, a sum over smaller chains on clusters with R = R,. First note that 
in clusters with R < R, contributions from smaller chains are also neglected. Be- 
sides, in clusters with one maximal R, only the longest chain is relevant to Re .(U), 
and in the limit w -+ 0,  U ( W )  is also calculated from the backbone cluster. Thus, 
the treatment is correct in these two limits (though this does not necessarily imply 
accuracy in the limits w -(. 0 and w + wc). Also chains with only one R have already 
been accounted for in the pair approximation regime. Perhaps the most important 
theoretical argument for neglect of shorter chains is that a thermodynamically moti- 
vated (Hunt 1592) method to  determine a long time limit of cluster charge transport 
yields the same length dependence for a dominant cluster current and relaxation 
time as in the longest chain. However, unlike for chains, a quantitative discussion of 
charge transport due to all modes is unavailable. Nevertheless, the method chosen 
gives agreement with experiment, and is appropriate for and yields the correct result 

The problem of summing a series with (as it turns out) from 1-10 meaningful 
term (depending on the frequency) is non-trivial. The method here is to treat 
the first term separately, i.e. R = Rc, and to sum the remainder by integration. 
In the integration R = R, ( j  = 0 below) is excluded; to perform the integral 
analytically requires, however, the extension of the lower limit on j to 0. This 
seems inconsistent, but in the limit w i 0 where R = R, dominates, the integral is 
insignificant, while near U,, where the integral dominates, the term with R = R, is 
insignificant However, changing the lower limit of integration introduces corrections 
in the frequency dependence at higher powers of w (which become important by 
?yzwc, and which, together with the neglected quadratic terms in the integral over N 
for Rc cause the sum over cluster currents to start to decrease above rr2wc, thereby 
generating the loss peak). 

in I D  SyStems. 

The terms with R = R, are defined as (3 .212-d/3rrZ) EN I N , R ,  with 

I N , R e  = J l m ( d N / N d f 1 R = ) [ w Z R ~ C 2 N 4 / r r 1 / ( ~  + w Z R ~ C 2 N 4 / n 4 ) ]  
N 

and extension of the lower limit of integration in IN,R,  from 1 to 0 omits the tan-' 
corrections of order w2. For integration over R define 

R E R,exp - j  In R J R  = j (3.12) 

and the sum over j can be approximated directly as (Aj = 1) 

= (3 .2/3rr21)IN, ,  
N . R  
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IN,R = lm 1- d j d N  N-3exp[-[j(NE/L)'/Y]2](w/w,)2(N/n)4 

x exp -j/[I + (w/w,)'( N / T ) ~  exp -2j] (3.13) 

where wc ~ ~ ~ e x p [ - ( T , / T ) ' / ( ~ ~ ' ) ] .  Clusters with j > 1; N > 1 are rare. But 

( l / ~ 5 ) ~  = (T/T,)2(v-oY)/(dt ' )  = (T/T0)0.25 (3.14) 

is very small ((T/TO)0.25 5il 0.03 at typically measured temperatures). This is the 
reason why the temperature dependences of 1 and L are important. If values from 
Friedman and Pollak (1978) are used 1 5il L and clusters with j > 1 and N > 1 
would be so rare as to be irrelevant. (This question has implications on existing 
derivations of the conductivity of narrow ZD strips and on non-ohmic effects, which 
both depend on I 5il L.) But the derivation here is a simultaneous solution of three 
'well-known' equations. 

Integral (3.13) can be transformed to 

IN,R  = (1/27r2) J d j J d t  sint[t  + A,j2YeJ]-1 A ,  E Z~(Z/L)~(W, /W) .  

(3.15) 

In (3.15) the integral over j is done first; the lowestader term in w / n 2 w ,  is found 
when the lower limit is extended to 0 and ej is neglected 

IN,R  = (1/27r2) d t  (sin t ) t ( ' / 2 Y - 1 ) ( ? r / 2 u ) ~ ~ ~ e ~ / 2 u ) / A ~ ~ 2 Y .  (3.16) J 
By w % wCr2  higher-order terms reduce the value of the conductivity. Subsequent 
integration over N yields 

IN,R = (1 /4rru)  cosec( s / z u ) r (  1/2v)?r-'/Y[sin ?r/4u][(w/wc)(  L / 1 ) 2 ] 1 / 2 u  (3.17) 

and combined with (3.11) and the definitions of IN,R,  

Rea(w)  = oDC + (O.OOSwC/l)[1 + (T,/T)0~'4(~/~c)D~551. (3.18) 

Although the integrations ate neither particularly straightforward nor trivial, they are 
not described here in detail because of space limitations. Performed for arbitraly d 
they yield 

where numerical constam have been suppressed. The latter yields 

(3.20) 
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with 

p =  2 ( u - u v ) / ( d +  1). (3.21) 

For d = 1 (when distributions with infinite resistance values are excluded) known 
results arc obtained (Zwanzig 1982) 

u(w)  a wo + wll’ p = o (3.22) 

since in ID  U = U = 1 and 1 and L do have the same temperature depen- 
dence. Moreover, the frequency-independent term is known to arise from critical 
Rs and the frequencydependent term from ‘off-critical’ Rs. For d = 3 one has 
p = 0.5. This value agrees closely with experiment in both a-Si and a-Si:HAu (if 
wC = Y e ~ p [ - ( T ~ / T ) ’ / ~ l  = (RCC)- l ) .  It is worth noting here that p arises from 
the quotient ( l / Z z ) / ( l / L * )  = ( L / l ) 2 ,  i.e. from the difference in the densities of AC- 
and Dc-current-cartying paths. Systems, therefore, for which scaling of u(w)/uDc 
as a function of w/w,  does not require an extra temperature-dependent factor (such 
as 1D VRH systems and ionic conducting glasses), must have the same densities of 
AC- and Dc-current-carrying paths. Also, in order for the same power of 7‘ to apply 
to both terms, the exponential in the cluster distribution function, ns, must be a 
function of an argument with l / L ,  a ratio which only arises when cluster currents are 
expressed in term of chain currents. At this point, however, neither experimental 
nor theoretical results are so accurate or extensive that it is certain that two different 
terms in the low w response exist; it cannot be claimed that the same 7’-dependent 
scaling must be found in each (expressed as a ratio of u(w)  to uDC). 

Experimental results for Re U(W) and Im U(W) are reported in terms of the 
scalcd loss functions 

ph 

= - uDCIWc/uDCW = (WcW/uDc)(d/dw)[Im d W ) / W ] .  

(3.23) 

Results for FR(w) arc 

FR(w) EJ O.OOS(L/l)* + O . O O ~ ( W / W , ) ~ ~ ~ ” (  L / / ) z ’ ’ / v .  (3.24) 

Im U ( W )  has not been calculated here directly. Several approximations are based on 
the fact that processes with T FS l / w  contribute most to Reu(w) ;  these approxima- 
tions are inappropriate for calculation of Im .(U). Thus Im u(w)  is best obtained 
by Kramers-Kronig relations. If 

u(w)  = Aw’ (3.25) 

then it is known that 

Im A/ Re A = t an  srr/2. (3.26) 

While this relationship is strictly valid only if the power s holds for all frequencies, 
introduction of a cut-off frequency wc introduces corrections linear in the ratio w/wc. 



The low-frequency conductiviiy of the Fermi glass 6967 

These corrections are not seen by F,(wf (because of division by w and subsequent 
differentiation) so that the relevant terms in Im b ( w )  yield for F,(w) 

F,(w) = 0.006(L/I )z  f 0 . 0 0 5 ( w / w , ) ” z y ( L / I ) z ~ 1 ’ ~ .  (3.27) 

In the case s = 1, tansn/2 diverges (giving rise to a logarithmic divergence in 
Im A, but not in Im ~(0)); CHopital’s rule has been used to generate the constant 
factor in the term linear in w. The results for FR(w) and F,(w) give excellent 
agreement with experiment in a S i  (Hunt 1991a) if the result for the pre-exponential 
for uDc is taken from experiment and not from theory (known to be inapplicable in 
this particular system). 

4. Discussion and conclusions 

It is clear that non-local relaxation represented by cluster polarization currents with 
enhanced relaxation times is responsible for the ObSeNed low-frequency AC conduc- 
tivity of VRH systems which is strongly enhanced over a low-frequency Debye cut-off. 
The description here of these cluster currents in terms of independent chain currents 
leads to excellent experimental agreement, but leaves some questions unanswered. 
One is the question of intra-cluster screening, Le. do the shorter chains of a given 
cluster generate a significantly depolarizing field? If so, does this field slow relaxation 
further (as in Pollak (1971))? Or does it reduce the effective chain capacitance? 
(In Hunt (1992) it is shown that intra-chain screening does so.) Another is whether 
significant charge transport between chains occurs. This question cannot be answered 
without relaxing the approximation severing bonds. It is not clear to what extent 
various relaxation modes in different chains of impedances can be identified as inde- 
pendent. Thus the particular decomposition of clusters chosen cannot be rigorously 
justified, i.e. quantitative error estimates are not available. 

Questions regarding the relevance of such concepts as anomalous diffusion, etc 
to transport in glasses have been discussed at some length (Hunt 1991b). It is 
worth repeating, however, that the general features (a loss peak which is broad 
and asymmetric in [u(w) - uDC] /w  at a frequency wc which is proportional to 
uDC (Barton 1966, Nakajima 1972, Namikawa 1975)) of relaxation in glasses are 
reproduced in this and related treatments, and that more specific systemdependent 
propcrties are generated as well. 

That U ( W )  should have contributions with two different powers (below we) is a 
product of the decomposition of the clusters considered and of the different temper- 
ature dependences of I and L. The decomposition appears to maximize o,(w) with 
no redundancy. Moreover agreement of u ( w )  with experiment and of the transverse 
cDc(uI) in thin films (Hunt 1991~) is good. But if 1 and L should have the same 
magnitude, the importance of the term in W ( I + ~ / ~ ” )  diminishes greatly; although it 
should not be necessary to reformulate the theory, agreement with experiment regard- 
ing the frequency dependence would be worsened. However, the scaling relationship 
for u(w)/uDc is a strong indicator that 1 and L do have different temperature de- 
pendences. The question then arises, which agreements with experiment are better 
established, those with .(U) (and ul in thin films), or those (where it is assumed 
that I m L) in non-ohmic effects? And which theoretical approach is more solidly 
grounded? 
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In summary, this work appears to answer some questions relating to transport 
in the Fermi glass and to raise others. The field, while reasonably well understood, 
is in need of further theoretical advances as well as additional experimental work, 
particularly in the very-low-frequency limit (where the h e a r  frequency dependence in 
(3.18) should take over). Further research into these questions will aid in establishing 
the relevance of deviations from the simplest model assumptions, the appropriateness 
of the various calculation schemes, and the general physical behaviour of amorphous 
semiconductors. By extension, the physics of disordered insulators generally will be 
better understood. 

Appendix 

The treatment in section 3, where u ( w )  is calculated from the longest cluster chains 
will ultimately require a dielectric treatment of ellipsoidal inclusions with non-uniform 
polarkations h a medium 6,. Interactions between such ellipsoidal inclusions in a 
random assemblage cannot be accurately treated in dipole-dipole form, because in 
principle their separations may be less than their individual lengths. Nevertheless, the 
generation of such ellipsoids by taking the longest chains of each individual cluster 
does guarantee that their minimum separations be greater than their individual lengths 
because the clusters are isotropic, so that the dipole approximation may be sufticient. 

We consider a dielectric cylinder of macroscopic height, h,  and radius P, so that 
the volume V = ~ p ~ h .  The quantities p and h will be allowed to diverge. The bulk 
of the dielectric has a frequency-dependent dielectric constant, E, (w) ,  while spherical 
volumes of radius ai and dielectric constants f;(w) are distributed randomly inside, 
according to the cluster statistics of percolation (Stauffer 1979). A free charge density 
ur = D .  n is placed on the top and bottom surfaces of the cylinder. The field D 
induces a uniform polarization of both media; the polarization of the inclusions may 
be considered uniform for the purpose of calculating the field outside'the spheres. 
The actual non-uniformity will contribute to higher-order terms in the multipole 
expansion of the field. Although we neglect these terms here, it has been shown that 
this approximation may not be adequate. 

We assume that both the dielectric and the spheres are acted on by a macroscopic 
field E. This average field is given by 

E = €;'(Or t up) - C ( 4 ~ ~ S / n ) f ( c i ) E i  
i 

where E; is the field acting on sphere i, and with f (q)  = ( E ;  - e , ) / ( . ;  + 2e,), 
appropriate for spherical volumes. Now u,+u,, the sum of the f ree  and polarization- 
charge densities, would be E .  n in the absence of the spheres, and one would have 
U = - U  , + D~K,, with K, = cm/c0. But in our case P 

The second term in the square brackets represents the interaction between the finite 
clusters and the DC cluster, as the DC cluster feels a smaller average field when the 
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effect of the polarization of the clusters is included. Solving the above equation for 
E gives 

Here the average field is taken for the moment to be the local field; later the well 
known linear relation E,,,/E = ( l + x , ) / ( l + 2 ~ , / 3 )  will be applied. The effective 
dielectric constant, feR = D o / E  is 

Now if the polarization current in a given cluster is assumed to be spread uniformly 
throughout the cluster, but expressions for u p ( w )  are used consistent with the current 
in the longest chain, one gets for u ( w )  = e(w)iw: 

where uN is the conductivity of an N-chain, and where the term iwe,/uDc now 
represents the interaction between the DC cluster and the finite clusters. This factor 
may be neglected if the low-frequency behaviour of the conductivity is desired, so that 
we arrive at the expression used at the beginning of section 3. Also, if the relation for 
the local field in terms of the average field is applied, one finds again that correction 
factors of the order of 1 t iwc,/uDC are generated, which may be neglected in the 
low-frequency limit. 
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